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Abstract

The assumption of a discrete space-time is expressed mathematically by restricting the
space-time variables to the field of integer numbers, and by restricting to the field of
rational numbers the functions describing the laws of motion. This rational character must
be preserved under the transformations connecting different systems of reference. The
Cayley parametrization of semisimple Lie groups, and in particular of the Lorentz group,
satisfies this condition if we require these parameters to take only integer values. The
rational points of the most frequently used transcendental functions are obtained with
the help of the integer complex and hypercomplex numbers. Some applications are made
concerning the laws of motion in special relativity defined over a (3 + 1)-dimensional
cubic lattice.

1. Introduction

The idea of a discrete space-time has been introduced by physicists in the
past in several different ways.

Heisenberg (1938, 1943) advocated a fundamental length and inferred its
connection with a discrete mass spectrum.

Snyder (1947) has proposed a quantized space-time in the sense of coordinate
operators with discrete spectrum, but the introduction of a finite minimal
unit of length forces the non-commutativity of these operators.

Flint & Williamson (1953) modified Snyder’s position operator by using
an elementary length in the direction of motion.
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According to Darling (1950) the space-time is continuous but the dynamical
laws must be expressed by means of finite difference equations, a method which
was also adopted by Hellend & Tanaka (1954).

In a different approach, Castell (1966, 1967) assumed that the space-time
structure at the microscopic level is determined by a fundamental length. Led
by symmetry considerations, he postulated that this microscopic length is
the scale constant of a 5-dimensional pseudohyperbolic geometry embedded
in a 6-dimensional Euclidean space.

In the construction of unitary irreducible representations of a new dynamical
group, Aghassi, Roman & Santilli (1970, 1971) found a fundamental length
associated with the central extension of the covering group (which length
gives at the same time one of the labels characterizing the irreducible repre-
sentations) and proposed a covariant four position operator which belongs to
the associated Lie algebra.

In the aforementioned papers the quantization of space-time variables has
been obtained, in general terms, by the introduction of difference operators
or quantum generators. Recently Ahmavaara (1965, 1966) proposed a finite
space-time cubic lattice, which is embedded in a finite linear space over a
Galois field. Similarly, Bopp (1967) adopted the idea of a finite cubic lattice,
with discrete space variables and continuous time, but this lattice structure
is Lorentz invariant only when the number of points becomes infinite. Finally,
Greenspan (1973) expressed the law of classical mechanics in difference
equations with discrete space-time variables, and these equations are invariant
under continuous groups of transformations.

In this paper the assumption of a lattice structure for the points of space-
time is adopted, which requires the use of difference equations. A stronger
assumption requires the solutions of these difference equations to take only
rational values. As a consequence of the conservation laws, this lattice structure
and the rational character should be preserved under coordinate transformations
without taking the limit to a continuous structure of the space-time.

The strong character of these assumptions makes it very hazardous to accept
them, because of the possibility of non-physical constraints; but at the same
time it opens the way to new superselection rules to fit some discrete values
of physical magnitudes.

In this paper simple consequences and elementary methods that arise from
these assumptions have been elaborated in a more intuitive than rigorous
way, and a few simple examples in the area of classical relativistic mechanics
and electrodynamics are given. Yet no applications to the problems of
quantization will be made, which nevertheless seems to be the crucial test of
the assumptions.

In Sections 2 to 5 a classical treatment of the Cayley parametrization of
the semisimple Lie groups is made with emphasis on the proper rotation and
Lorentz groups. Using the multiplication law of the Cayley parameters of the
Lorentz group, an associative non-division algebra of hypercomplex numbers
is introduced.

In Section 6, the assumptions adopted and the invariance principles con-
nected with them are explained.
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In Sections 7 and 8, a method is constructed for finding the rational points
of the trigonometric and hyperbolic functions and other quadatic forms with
the help of the hypercomplex numbers introduced earlier.

In Section 9, the Cayley parametrization is applied to the calculation of
the rational matrix elements of the semisimple groups.

In Section 10, simple examples of equations of motion in relativistic
mechanics and electrodynamics are worked out with the help of the mathe-
matical tools introduced in previous paragraphs.

2. Cayley’s Rational Parametrization of Semisimple Groups

Let &/ be a semisimple Lie group of complex matrices A, which leaves
invariant some non-degenerate bilinear form.

We call a matrix 4 of the group &/ non-exceptional if det (E +4)#0,
where F is the unit matrix. Cayley (1846) has proved that every non-exceptional
matrix 4 can be expressed as follows

A=E+S)VE -S)=(E - S)E +5) @2.1)

where S is also a non-exceptional matrix.

If G is the coefficient matrix of the non-degenerate bilinear form, which is
left invariant under the group &, the non-exceptional matrices 4 satisfy the
relation

A*GA =G 2.2)
and because of (2.1) the corresponding matrices S will also satisfy
S*G+GS=0 (2.3)

In order to obtain the independent parameters of the semisimple group &/
it is more convenient to work with expression (2.3), which is linear, rather
than with expression (2.2), which is quadratic. If we diagonalize or reduce to
the canonical form the coefficient matrix G we have a further simplification
of (2.3). Taking the independent elements of the matrix S given by (2.3) to
be the independent parameters, we obtain Cayley’s rational parametrization
of the semisimple groug /. (Note that when the independent elements of S
are complex their real and imaginary part should be taken as independent
parameters.)

In Table 1 we give the explicit conditions on the non-exceptional matrices
A and S for all semisimple Lie groups, as derived from expression (2.2) and
(2.3), respectively. The notation 47 means the transpose matrix and 4™ the
adjoint. Also

in the group Sp(2n) and
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in the groups SO(p, q) and SU(p, q), where E,, £, E, are the unit matrix of
order n, p, q respectively. The condition on the matrix S gives automatically
the unimodularity condition

det(E+A)=det(E —A4) 2.4

except in the groups SU(n + 1) and SU(p, g) and therefore (2.4) imposes an
extra condition on the parameters corresponding fo these groups.

TABLE 1. Cayley’s decomposition of semisimple groups

Conditions Conditions

Group on A on § Unimodularity Parameters
so@n) ATA=E S$T+5=0 n@2n—1)
So2n+1)4T4=E sT+5=0 n(n+1)
SUm+1) A"A=E S'+S=0 |E+A|=|E-4] n(n+2)
Sp(2n)y  ATJA=J STr+Js=0 n@n+1)
S0(,q) ATIA=1 STI+IS=0 12 +q)p+q—1)

SUp,q) ATA=I ST+IS=0 [|E+A|=|E-4| (p+q)—1

When the matrix 4 is unimodular but exceptional, i.e. when det (E + 4) =0,
then Cayley’s decomposition (2.1) is not possible, but in this case Weyl (1946)
has proved that any exceptional unimodular matrix 4 can be transformed into
the form

where E2,, is a unit matrix of even dimension and B is a non-exceptional
matrix. Moreover the matrix A can be expressed as the product of two com-
muting non-exceptional matrices.

Some useful expressions derived from (2.1) are

_E-S 2E
E+S E+S
where the symbol of division has been used, because the matrices of the

numerator and of the denominator commute. For any non-singular matrix B
we have

@2.5)

E -—BSB!

BAB ' = ————
E+BSB!

Also from the product of two non-exceptional matrices 414, = A4 one
obtains

E+S=E+S)E+S:S) ' E +S,) (2.6)
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which yields the multiplication law for the parameters of the group, i.e., the
Cayley parameters of the matrix 4 in terms of the parameters of the matrix
Ay and A,. In particular, if

S1+8,

A,A,] =0, then § = ————=
[A1,4,] en E+8,S,

if
[S1,5,]=87=8,=0, thenS=8§,+5,

3. Some Examples

3.1. The Rotation Group, SO(3)
From Table 1 the matrix S is antisymmetric and it can be expressed in the

following way
1 0 n -p
S=—{-n 0 gq (3.1.1)
m

p-g O

where 1, p, ¢ are independent parameters and m has been introduced for
convenience. Using (2.5) and (3.1.1) one obtains the Cayley parametrization
of the non-exceptional matrix of the rotation group

1

A Tttt Tp? +q°
m?* —n? —p? +4* —2mn + 2pg 2mp + 2ng
X 2mn + 2pg m? —n*+p*~q* ~2mg+2np
—2mp + 2nq 2mq + 2np m?+n? —p*—¢q°?

(3.1.2)

If we define @ =m +in, § =p — ig and then impose m? +n? +p2 +q2 =1,
the parametrization of the matrix 4 given by (3.1.2) is identical with the
parametrization used by Wigner (1959a) for the 3-dimensional rotation group.
The parameters a and § used by him are related to the parametrization of
SU(2), the covering group of SO(3), in this way

A:(O‘ ‘6), laP+[8P=1 3.1.3)
‘“B* a*

The one-to-two correspondence between SO(3) and SU(2) groups is obvious:
two different elements 4 and —4 of the group SU(2) defined by (m, n, p, q)
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and (—m, —n, —p, —q) correspond to only one element of the rotation

group.
The exceptional proper matrices of the rotation group are

(o) ) ()

and all the matrices obtained from these by a similarity transformation with
any of the non-exceptional proper matrices (3.1.2).

In terms of the components of the axis of rotation (44, 44, 23) and of the
angle of rotation ¢, the Cayley parameters have the following geometrical
interpretation

1 m
== Cos ¢= —5—————5— (3.1.4)

When ¢ = 7, then from (3.1.4) we obtain either m =0, or some of the para-
meters 1, p, q go to infinity. Since the exceptional matrices correspond also to
¢ = m, it follows that in the case of non-exceptional matrice (3.1.2) the para-
meters n, p, g must be finite and m 5 0.

Similar parametrization and corresponding properties can be obtained for
the N-dimensional rotation groups.

3.2. The Unitary Group SU(2)

From Table 1 the matrix S is antihermitian and it can be expressed as

s=l( 1 ”) G.2.1)

—p* ib

where ¢ and b are real parameters, p =r +is and [ has been added for
convenience.
From (2.5) and (3.2.1) one obtains

A—~1— 7 +ab—|pl?+i2lb —2lp
A 2p* Prab—|plP+i2a

) (32.2)

with A=1% —ab +|p? +il*(a +b).
The antihermiticity of S gives
det (E +S)*=det (£ —S)
but it does not imply the unimodularity condition. (In the rotation group
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the antisymmetry of S does imply the unimodularity of A.) If we impose
detA =1, from (2.1) follows that

det (E +S)=det{(E —5)
Both conditions, unitarity and unimodularity of A4, give det (E +.5) = real, or
a+b=TrS=0 (3.2.3)
Substituting (3.2.3) in (3.2.2) we obtain the general expression for the

unitary unimodular matrices in two dimensions

§ LS L )/ —2r -2
A=—l ‘ r-s e 2 2 rztli ; (3.24)
A 2lr —121s I“—a—r°—s“+i2ia

with A =2 + 4% + r* + 5. Obviously the matrix (3.2.4) is equivalent to (3.1.3),
but uses different parametrization.

3.3. The Unitary Group SU(3)

From Table 1 the matrix S is the general 3-dimensional hermitian matrix

1 ia o o
S=7 —p* ib T (3.3.1)

—o0* —7* o

where a, b, ¢ are real parameters, p, 0,7 are complex and / is introduced for
the sake of homogeneity. As in the case of the SU(2) group, and in contrast
with the orthogonal group, the unimodularity condition is not implied by
(3.3.1). If we impose the last condition together with the unitarity of 4, we
have

det (£ +8) = real or il@a+tb+c)+idetS=0 (3.3.2)

which restricts to eight the number of independent parameters. Observe that

in this case the matrix .S is not traceless, contrary to the case of the orthogonal
and SU(2) groups. We will come back later to this unwanted result, because

it is desirable to have the matrices S with the same properties of the corresponding
infinitesimal generators.

3.4. The Proper Lorentz Group SO(3.1)

From Table 1 one obtains the traceless matrix

0 n -p r
l)en 0 g s
S=— 4.
vl p —a 0 1 (3.4.1)
r § r O
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where n,p, q, 7, $, t are real independent parameters and m has been introduced
as before. The unimodularity of A does not impose further conditions on these
parameters. From (2.5) one gets

mton?_pregtirt— @ 4\
R 2mn + 2pg + 2rs — 2Ni
A‘Z ~2mp +2nq +2rt + Qs
—2mr — 2ns + 2pt — 2Ng
—2mn +2pg +2rs + 2\t 2mp +2ng + 2rt — 20
m?—n?+pt—g? -+ A+ N2 —2mq + 2np + 2st + 2\
2mq +2np + 2t — 20 m2+n® —p?—rt—st+2 402
—2ms + 2nr — 2gt — 2\p —2mt ~ 2pr +2gs — 2\n

—2mr + Zns — 2pt — 2Ng

—2ms — 2nr +2qt — 2\p

~2mt + 2pr — 2gs — 2\n (34.2)
m*+nt+p?rgt+r? st 4+ N

where mh =nt +ps tgr

A=mP+n?+p?+q? — PP s 2 22

If A> 0, since det 4 = 1, one obtains the general expression for the non-
exceptional matrices of the proper Lorentz group (444 > 0).

If r =5 == 0, one recovers expression (3.1.2) for the proper orthogonal
group in 3-dimensions.

If n =p =g =0 one is left with the non-exceptional matrices of the pure
Lorentz transformations. In this case, comparison of (3.4.2) with a pure
Lorentz transformation with velocity v along v gives (Meller, 1952)

1/2
Ve _ Uy _Vz_ 2mc ( 2) m?—r—s?—1*

r s t mEirtes?+sd’ T mr e st
(3.4.3)

v
(32

where ¢ is the velocity of light in vacuum.
Ifm=0orr,s,t goes to infinity, we have from (3.4.2) the following
matrices
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which are exceptional and also do not belong to the proper Lorentz group
(4 44 <0). Therefore for the non-exceptional matrices of the proper Lorentz
group the parameters r, s, ¢ must be finite (1, p, g must also be finite as we
have seen before) and m # 0.

We still can have exceptional matrices of the proper Lorentz group such as

-1 0 0 0 -1 0 0 0 a;; 0 0 a4,

1 0 o0 0 a3, 0 ay 0 -1 0 0
0 0 as3 asaf’ | 0 O =1 0 {0 0 1 0
0 0 443 ag 0 ags 0 ag as; 0 0 ay

with a;; = a4q and a;4 = a4, a% —aja =1 (i =1, 2, 3) and all the matrices
obtained by these by a similarity transformation with the help of (3.4.2).
If we define

a=m—r+i(n—N), B=—p—r+ilg—s)

] (3.4.4)
Y=p—rti(gts), §=m+r—i(n+h)

J

and introduce these variables in the general expression of the proper Lorentz
group in terms of the parameters of the SL (2, C) group (Naimark, 1964a)

(j g) ad—Py=1

we obtain the expression (3.4.2) plus the condition

mA=nt +ps +qr 3

A=m2int+p? gt -t - \=1 (3.4.5)

As in the case of the rotation group, the one to two correspondence betwesn
the proper Lorentz group and its covering group, SL (2,C) can be easily seen
with this parametrization; two different elements, A and —4 of the group
SL(2, C) defined by the sets (m,n,p,q,r,s,t) and (—m, —n, —p, —q, —r,

—s, —t) correspond to one and the same matrix of the proper Lorentz group.

4. Hypercomplex Numbers Associated With Cayley Parameters of the
Lorentz Group

The general composition law of the Cayley parameters can be found from
(2.6). However, in the case of the proper Lorentz group, it takes a particular
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simple form due to the homomorphism between this group and SL(2,C). In
fact, substituting (3.4.4) in the multiplication law of SL(2,C), namely,

a ﬁ ar ﬁ' _ Ol” B" _
('T 5) (’YI 6:) - (')’" 8") ad — 067 =1

and comparing the matrix elements on both sides, we easily obtain

1

m'| \m -n -p —q st =A||m

n" n o m g -p -r X t||n

" p —-gq m n -t XN r s||p

¢l lg p-n m X t - rliq

ol s -t -\ m -n p —g||" (1)
" s —r -\ t n m —q-p||s§

" t A r -s -p q m-n||f

?\"'d A tos r g p n m 7\'4

with the parameters satisfying (3.4.5). The square matrix U of expression (4.1)
is itself a non-unitary 8-dimensional representation of the proper Lorentz
group. In order to ascertain whether this representation is irreducible we
calculate the infinitesimal generators J,, that satisfy the standard commuta-
tion relations, and substitute them into the Casimir operator. We find

MW =0+ -1=% 4.2)

where (lg, [,) are the characteristic labels of some irreducible representation.
Here, the only possible solutions for (lg, /) are (3, 3) and (%, —3), which
correspond to the 2-dimensional irreducible spinor representations. Hence,
our matrix U is a reducible representation of the proper Lorentz group.

With the help of the matiix U we can also construct a system of hyper-
complex numbers in the following way: Let us expand the matrix U as a linear
combination of 8 numerical matrices, each multiplied by one of the 8 para-
meters (we also relax the conditions (3.4.5) on these parameters):

U=mug+nu, +puy+qustrig +sug+tug+ Nig 4.3)

The matrix multiplication of any two matricesuy (4 =0,1,...7)is given in
Table 2. (As usual, one matrix in the left side multiplied by one matrix in the
upper side gives the matrix in the intersection.)

Choosing the 14 as basis elements and the multiplication law their matrix
multiplication, we can construct an associative algebra over the field of real num-
bers; in other words, we have a field of hypercomplex numbers, defined by (4.3),
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TABLE 2. Multiplication table of the basis elements u 4

1 Uy Usy Uj Ug Ug Ug U~
111 Uy Uy us  Ug Us Ug Uq
Uy | Uy -1 —U3 Uy Ug —Ug Un —Ug
Up | Up Us -1 —uy —ug Uy Uy —Us
Uz | Uz Uy uy —1 Uy Ug —Us —Ug
Ug i Ug —Us Ug Uq 1 —Uy Uy Us
Us | Us Ug Uy —lUg Uy 1 —uj Uy
Ug | Ug Uy —Ug Us —Uy Uz 13 U,
Uqg | Ug —Ug —~Us —Ug Uz Uy u, 1

with real components (m, n,p,q,r, s, t, \) and generatorsuy (4 =0,...7)
satisfying the multiplication law given by Table 2. This algebra is not a division
algebra, because it has divisors of zero. A 2-dimensional representation of this
algebra can be obtained with the help of (3.4.4)

o S R e
MR I ER T

Identifying (4.4) and (4.3) it can be checked that these 2-dimensional
matrices satisfy the multiplication law of Table 2.

4.4

S. Cayley Parameters and Generalized Fuler Angles

According to the geometrical interpretation of the Cayley parameters of
the rotation group given by (3.1.4), if we take p = ¢ = 0 in (3.1.2), the matrix

. m?—n® 2mn 0
i
=——| 2mn m?>-n* O (.1}
m-tn 0 0 m? +n?

represents a rotation around the x 3-axis. If we compare this matrix with the
matrix that gives the same rotation in terms of the angle of rotation ¢ we
obtain the relation between the two kinds of parameters

m? —n* 2mn

CO$ Q= —5—x5 sin ¢ =
m? +n? ¢ m? +n?

(5.2)

with —r<¢p<wmandm # 0, —c<m,n <oeo,
In the same way the Euler decomposition of the general element of the
rotation group can be achieved in terms of the Cayley parameters
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. m3 —n? 2mmm;, O m3 +n3 0 0
A =Z 2mn;  mi—n? 0 ) 0 m3—n3 —2mqn,
0 0 m? +n? 0 2man,  m3+n3
m3 —n3 ~—2many 0
x | 2msny m3—nd 0 (5.3)
0 0 m3 +n3

where A = (m? +n2)(m3 + nd)(m3 +nd).

Symbolically, if we represent the general matrix of the rotation group
(3.1.2) by A(n, n, p, q), the Euler decomposition can be written

A(m7 n,p, Q) = A(mls ny, O: O)A(mZ: 09 Os n2)A(m3, ns, 0: O) (54>

The relation between the Cayley parameters in the Euler decomposition
(5.3) and the parameters of the general rotation (3.1.2) is easily found with
the help of the multiplication law (4.1), namely,

m=ni Myl —nMyns, N =My t M Moty (55)
D =N ia0ly — B34 03, g =Nt Ry +n1n2n3

In the general case of the n-dimensional proper orthogonal group it is
possible to factorize the general matrix in terms of the generalized Fuler
angles by standard methods (Murnaghan, 1962). For each particular matrix
in the decomposition a correspondence similar to that in (5.1) and (5.2) can
be obtained between the Cayley parameters and Euler angles.

According to the geometrical interpretation of the pure Lorentz trans-
formations given by (3.4.3),if we take in (3.4.2)n=p=g=s5s=1t=0, the
matrix

m*+rt 0 0 —2mr
_ 1 0 m? —y? 0 0 (5.6)
4 T m? 2 0 0 m? —p? 0
—2mr 0 0 m? +p?

with m? — 2 >0, represents a pure Lorentz transformation along the x ;-
axis. If the same transformation is written in terms of the hyperbolic functions
we conclude that

>

2,2 ,
me +r 2
hg=—-, ho=— 5.
¢ me 2 $ mZ 2 (5.7

with —eo <@ <{eo, and 0 < 7| < |m| < oo,
The general matrix of the proper Lorentz group can be factorized in the
form of proper rotations and pure Lorentz transformations (Naimark, 1964b).
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More explicitly, if A(m, n, p, ) represents a proper rotation and B(m, r, s, 1)
a pure Lorentz transformation, the general matrix of the proper Lorentz group
can be expressed as follows

A(m, n,p.q,r.s, f, }\) :A(mla NP1, ql)B(m2ar29 O: O)A(m3,n3,p3, LZ3)

The relation between these parameters can easily be obtained with the help
of the multiplication law (4.1}, namely

M =mmaMy —NiMaNy —PiFraPs — §1¥2qs,
R=nymomy tmymany tq172p3 — pir2qs,
P = Doy — G g T mymapy +nymaygs,
4= q1r2M3 tprang — B iMapy +MyMags,
FEmMramy tigrang tpirops — 417293, g (5.8)
SENR My —~MyFly — (1F2P3 — PiFags
L= —=piraMs — g i3 T Myrap3 —N1raq3

N=qirams — pyranz tnyraps +MFaqs

P

In order to factorize the SU(2) group, in terms of Cayley parameters, we take
expression (3.2.4) and make alternatively 2 parameters equal to zero. We obtain

q-_ L [P-d—i2ia 0 Cem0 (59
P +q? 0 ?o+ne) T (59)

1 -2 2
Y ( 2r 12---r2) »,  e=s=0 (.10)

1 12— _iIs
A:z’2+r2(—i22s zzwsz)’ azr=0 G-11)

From the homomorphism between the SO(3) and SU(2) groups and its
parametrization (3.1.2) and (3.1.3), we deduce that (5.9) corresponds to a
3-dimensional orthogonal matrix with

m 12 - 42 ) n 2a

= =cos —, =
Vm?+n?) 12 +4? 2 VmE+n?y 1P +d?
where ¢ is the angle of rotation around the x g-axis. (5.10) corresponds to a
matrix of rotation with

9o
-sm2(5.9)

m 12— 8 p 2r B
2, N 2.2 cosT, 2 L3N 73, 3o siny
(P +p?) Ptr 2 VP +pt) P+r 2

(5.10")
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where 8 is the angle of rotation around the x,-axis. (5.11) corresponds to a
matrix of rotation with
m 12 s ] q 2s
= = COS — s =
\/(m2 + q2) 12 +S2 2 \/(m2 + q2) 12 + S2
where ¥ is the angle of rotation around the x-axis.

In analogy with the Euler factorization of the SU(2) group (Wigner, 1959b),
we obtain

=sin %}(5.1 1)

4oL P —a%—-i2la, 0 12-4d3 2,
A 0 —dd+i20a, )\ 2la, 13-4
y 13 —a% — 2030, 0
O 3§~Q§+i213a3
with
A=(?+a3)(13 +ad) (3 +4d) (5.12)
Symbolically,

A(Z: a,r, S) = A(lla ay, Oa O)A(l2a 05 az, O)A(l37 as, 09 O) (513)
where the parameters satisfy

I=lil3—ayhas,  a=alls ”132“3} (5.14)

r=ayazly —liayas, q =1lia4l3 taqaqa;

In the case of the SU(3) parametrization each parameter in the off-diagonal
of (3.3.1) gives rise to different traceless matrices S,

1 {0 7 O 1 0 ir, O
S=—{-r; 0 0}, S=—+{irp, 0 0}, ete. (5.15)
ty\o 0 0 2\0 0 O

and the corresponding matrices 4, given by (2.5) are

, (- 24y 0
— | 2ry 2-#¥1 O |,

A=12+r
17700 0 1}+r3

q 12—r5 —i2lyr, O
A= | —izhr G-rs 0], et (5.16)
27 0 0
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In these cases, we have
detS=TrS=0

and from (3.3.2) the unimodularity of 4 is automatically fulfilled.

When we take one parameter in the diagonal of S,say ¢ # 0,and b =¢ = 0,
the unimodularity condition (3.3.2) requires 4 = 0. In order to obtain non-
zero but traceless matrices S, we choose the one-parameter matrices as follows

1 /¢ 0 0 1 0 0 0
S=~[ 0 -a 0}, S=7 0 b 0},
0 0 0 0 0 -b

1 (¢ 0 0
S= 7 0 00 (5.17)
0 0 ¢
and from (2.5)
1 ((z +ia)? 0 0
A=5—>\| 0 (- 0 | et (5.18)
Pta 0 0 17 +4°

The general matrix of the group SU(3) is factorized with the help of (5.16)
and (5.18) following the standard method (Murnaghan, 1962).

It can be seen that the first two matrices S given by (5.15) and the first of
(5.17), after dividing by the corresponding parameters, are identical to the
canonical generators of the SU(3) group

Ea+E——ou Ea-E-—ou Ha

where a is the root (1, —1, 0). This result, common to all semisimple groups,
is not surprising, because the matrices S of the Cayley parametrization and the
infinitesimal generators of the semisimple groups satisfy the same linear
conditions given in Table 1, and therefore both satisfy the same commutation
relations.

6. The Hypothesis of a (3 + 1)-Dimensional Cubic Lattice

The transformations we have described so far are acting on a linear vector
space defined over the field of real or complex numbers. We want to restrict
the field of this vector space to the field of rational and integer numbers. This
means that the components of the vectors are no longer continuous variables.
Instead, the components will only be discrete variables and the functions
connecting these variables will take rational values.

In particular, this hypothesis applied to the 4-dimensional Minkowski space
is expressed by the following assumptions:
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(1) The space-time variables can take only integer values. This is under-
stood on the basis of a 3-dimensional spacial cubic lattice supplemented
with a 1-dimensional temporal chain, in which the events can only be
assigned to one of the points of this (3 + 1)-dimensional cubic lattice.

(2) Any magnitude derived from the space-time variables should also be
integer or at least rational, and the laws of physics connecting these
magnitudes should be described by functions of rational character,
in the following sense: the dependent as well as independent variables
should take only integer or rational values. Strictly speaking this
assumption does not follow from the first, although it is consistent
with it.

(3) Since the “edge’ of the basic space-time cubic lattice is assumed to be
very small, the laws of physics will ‘appear’ as continuous for big
values of these variables. The functions describing the laws of physics
will be the same, but in the case of discrete space-time variables, only
the rational points of these functions will be taken as possible values,
while in the continuous case the irrational points are also accepted. This
correspondence law does not mean that we have to take the limit in
going from the discrete case to the continuous case. Instead we start
from the continuous space-time, which is the domain for the classic
and quantum physics, and assume that the equation of motion are
still valid in the discrete space-time, but restricted only to the integer
or rational values of their variables.

According to special relativity all inertial systems must be equivalent.
Therefore, the assumptions above stated must be valid for any arbitrary
inertial system. It follows that the rational character of the laws of motion
in a particular system must be preserved under a proper Lorentz trans-
formation, and that the space-time variables should be integer in any arbitrary
inertial system. Thesé two conservation laws will impose very strong conditions
in the transformations connecting different inertial systems.

In the following, we will study how to obtain the rational points of the
simplest and most often used transcendental functions, and the particular
linear transformations which preserve this rationality condition. Then we will
try to apply these results to some simple equation of motion in relativistic
physics.

7. Rationalization of Elementary Transcendental Functions

7.1. The Trigonometric Functions
The solutions of the diophantine equation x> +y* =r
(Sierpinski, 1964a)
x=(m?—n®d, y=2mnd, r=(m*>+n*)d (7.1.1)

where m, n <m and d are integer numbers, provided the solutions for x, y
are interchanged and added to them. If z = m + in is a complex number with
integer components (7.1.1) can be written

2 are given by
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x=dRez?, y=dImz*  r=d|z|? (7.1.19

From the definition of the trigonometric functions cosa = x/r, sina = y/r,
and from the completeness of the solutions (7.1.1) it follows that the rational
values of these functions are exhausted by

m? —n? _Re 7% Zmn  Im z?

cos o = = sino=—5—5= 7.1.2
m*+n?  |z?” m*+n? |z ¢ )
and by the same expressions for cos a and sin o interchanged.
p
Obviously
o m +z‘;@)2_ z? (7.13)
mEin? |z -1
and for integer value of &
. Z21<
e = P cos k@ +1 sin Ka (7.1.4)
z
hence
oS Kot I i + 2+ in Ka O (7.1.5)
= o , sin kKo = = - : 1.
2 12!2" iZ!ZK 2 !ZPK !212;\ y

These rationalized functions are non-continuous but they satisfy the
functional equations

Cos (K +Ko)( = COS K ;& COS Ko — Sin K0 Sin Ky

sin (K + Ko)a = Sin K0 COS Koo + SN K0 COS Ky (7.1.6)
cos® ka +sin® ke = 1
The argument a in (7.1.2) and (7.1.5) still remains irrational since it
represents twice the area of the circular sector whose angle is & in a circle of
unit radius. In order to rationalize it we adopt the convention that « is equal
to twice the area bounded by two radii and the joining chord divided by the
square of the radius. To be more explicit, suppose we construct a set of points
P, whose components are the real and imaginary part of

Z, =7z P01, k=0,1,2,...,p

where z =m +in, m, n, p, k positive integers. The distance of all these points
to the origin is always | z |?P. We define the angle between the radii of two
consecutive points P, and P, as twice the area of the triangle OP P .
divided by the square of the radius OP,. Obviously this angle is the same for
arbitrary Py, although it depends on the vector z = m + in. So the argument
of the trigonometric functions as defined becomes a rational number, namely

2mn

o= T2 =sen o (m, n integers) (7.1.7)
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7.2. The Hyperbolic Functions
The solutions of the diophantine equation x2 — 2 =2 are given by
x=m?*+ndd, y=2mnd, r=(m*-—n?d (7.2.1)

where m, |n | <|m |, and d are integers. In order to give a geometric inter-
pretation to this solution we take from (4.3) the particular hypercomplex
number

u=m+nug w@;=1

and define
w¥ =m — nitg } (7.22)
lu? = uu*=m? +n?

hence (7.2.1) can be written

2 2 2 2
u” +u* u°- —u*
—, yE—0 tg, r=lul? (72.3)

Fa

x=

The hyperbolic functions can be defined over the hyperbola x?—y?= =y?

as ch 8 =x/r, sh B =y/r, where /2 is the area bounded by the x- ax1s the
radius vector of the point (x, ¥} and the hyperbola divided by 7> Then, from
(7.2.1) the rational values of the hyperbolic functions are

m? +n? 2mn
=—— hf=—-—7 < 724
chp mz_nza sh 8 mz_nza tﬁi lm{ ( )
hence
+
=chp+shp=2 mi<iml
men (1.2.5)
e =chf—shf="—"
m+n

gives also the rational values of the exponential function.
For an argument k3, k integer, (7.2.5) becomes

m+n

chfc{3+sht<6=e"‘3=< ) nl<im]|

chkf —shkf=e @ = (m — ")
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and from these expressions it is easy to prove
1 uZK u*2x 1 MZK u*2x
ChKB:E{W.{.W}’ ShKﬁ='2—{WE'—W Uy (7.2.6)

where u =m + nu, (u3 = 1), and m, n, k are integers.
The rationalized function (7.2.6) satisfy

ch (kg +K2)8 =ch k;B ch ko8 +sh k5 shk,f
sh(ky tKko)B=shkfchkyf+shksfchif

sh? kB +chkB=1
2K

ch kB tugsh Kﬁ=§—z—‘-2—xEe“d"‘3 727

the last definition in analogy with (7.1.4).
If we take the set of points P, (x,y) whose components are the components
of the hyper-complex numbers

U =u®u P9 (k=0,1,2,p) (7.2.8)
the points P, lie in the hyperbola x2 —y?=r% r=|u[*, and for each point
ch kB = x/v, sh k8 = y/r satisfy the expressions (7.2.6). We define the rational-
ized argument for the hyperbolic functions § as twice the area of the triangle
OP,P, ., divided by (OP,)* where P, and Py, are two consecutive points,

therefore m
n
= = - .2.
8 PR shf In|<|m]| (7.2.9)

This argument does not depend on the particular point Py, although it
depends on the number u =m + nuig.

The rationalized trigonometric functions {7.1.5) and the rationalized hyper-
bolic function (7.2.6) satisfy the difference equations

A? coska +2(1 —cosa)cos (k + 1)a=0

A% sin ko +2(1 — cos @) sin (k + D=0 (7.2.10)
A?chkB+2(1 —chB)ych(k +1)=0

A?shkB+2(1 —chf)ysh(k + D=0

where the difference operator is defined as usual

Af(k)=fx + 1)~ f(x)
and « and § satisfy (7.1.7) and (7.2.9) respectively.
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From (7.1.4) and (7.2.9) and (7.2.10) we also obtain

72k (Z _ Z*)Z ZZ(K+1)

2 . =
A }Z*ZK— iZP IZIZ(;H-I) 0
2K 02 ,2Ak+1)

s U (U —u*) U B
a lulZK“ lul2 lul2(K+l)—0

7.3. Generalized Trigonometric Functions

Let C be a hypercircle of unit radius in a 4-dimensional space, defined by
the intersection of the hypersphere

x2+y?+z2442=1 (7.3.1)

with one hyperplane containing the vector (0, 0,0, 1). We can define generalized
trigonometric functions on this circle by
sing @ =X, singa =y, singa =z, cosa=t (71.3.2)

where o is twice the area of the sector bounded by the t-axis and the radius
of the point (x, y, z, £).
These functions can be rationalized with the help of the hypercomplex
numbers
w=Emtnuytpuytquy }
w*=m —nuy —puy — qug (7.3.3)
fw 2 = ww*
where uy, 4, and u5 satisfy the multiplication law of Table 2. In a similar way
as used for the trigonometric functions we have

1 w2K w*zk
COS KOt = — {——=— +
2 lw }ZK i‘/-’ ]2;5

1 (.O2K OJ*ZK
Sing KA ="-{\—pmT U — Ui T 57
1 2 iwaK 1 llwlzx

1 (JJZK w*ZK
SiNp KO = — {5 s — Uy T 50 7.3.4
2 2 {IwI2K 2 2 |w|2x ( )
1 wZK (LJ*ZK
Sing KO = —{\ T3 Uz — U3 T 57
2 iwlz" lwlZK

where m, n,p, q, k can take only integer values. These functions depend on
the particular hypercomplex number w, and they satisfy the functional
equations, for k, ! integers,
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cos (k + o = cos ko cos Jo — sing ko sing Jo — sing ka
sing lo — sing ko sing lo
sing (k +1)a =cos ko siny lo + siny ke cos lo
sing (¢ + 7)o = cos ka sin, la + sing Ko cos lo
sing (k + Do = cos ka sing I + sing Ko cos lo
cos? ka + sin? ka + sin3 ka +sind ka =1 (7.3.5)

Notice that the basis elements with negative sign (—u;, —u,, —u3) satisfy
the same algebra of the basis elements 7, j, k for the quaternions. With this
substitution (7.3.4) can be expressed also in the field of quaternions. In
particular, for k = 1, it holds
m? —n*—p—q
m?+n®+p?+q?°

2
2mn

m?+n?+p®+4°

cosa=

sinya=

2mp 2mgq

Sin, o = M0 =
2072 MO T 2 pi gt (13.6)

m?+n?+p?+4*’

The functions (7.3.4) also satisfy the following difference equations:
A% cos ko + 2(1 — cos @) cos (k + a=0
A% siny ka +2(1 — cos @) sing (k + 1)a=0
A% sing ko + 2(1 — cos @) siny(k + Da=0
A? sing ko + 2(1 — cos ) sing(k + Da =0 (71.3.7)

Since cos ke + uq sing ke + uy sing Ko + 15 sing ko= w2/ w ** we have from
(7.3.7)

AZ wZK B (CO _ 0)*)2 wZ(K-i-l) _
{w‘zx {wp ’w{Z(xH)

0 (7.3.7)

7.4. Generalized Hyperbolic Functions
Let S be an hyperbola defined by the intersection of the hyperboloid
P_xt_yt_t=1

and one plane containing the vector (1, 0, 0, 0). We can define generalized
hyperbolic functions on this hyperbola by

chf=¢, sh; f=x, shy, =y, shyf=z (7.4.1)

where f§ is twice the area bounded by the hyperbole S, the f-axis and the radius
vector of the point (¢, x, y, 2).
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Using the hypercomplex numbers

U=mtrugtsustitug
Ur=m —rug—Sus — fig (7.4.2)
bu P = uu®

where ug, 15 and ug satisfy the multiplication law of Table 2, the rationalized
functions (7.4.1) can be written

1 u2;< u*2l<
hif ==\t 1w
ch kB 2{1“1“ Iuizx}

2 2%
Sh1K{3=é”{|—Z“[“ﬁu4“u4 'I?I?,Z}
(2 ey (7.4.3)
shzfc{3=—2—- {‘—u-l-i;us-—us W}
w2 L }

1
Shs}{ﬁz;{wuéwuém

where m, 7, s, t, & can take only integer values. Obviously these generalized
hyperbolic functions depend on the chosen number (7.4.2); they satisfy the
functional equations
ch(k +)B=chkBchif+sh,kfBsh; I8+ shykBshyiB +shs xfshyif
shy(k +D)f=chkBsh{f+sh,kBchif
shy(k + D= chkfBshyIf +shokfchif (7.4.4)
shy(k +)f=chkfshslf +shyxfchif
ch? kB — sh2kf — sh3kf — sh3kB =1

as well as the difference equations

A% chkf+2(1 —chf)ch(k +1)8=0

A?shykf+2(1 — chf)shy(k + 1)=0 (7.4.5)
A%shy kB+2(1 —chB)shy(k +1)8=0

A? shykf+2(1 —ch)shs(k +1)8=0

Since

ch kB +ugshy kB + s shy kf +u63h3.‘<6=l—z'T§;
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we have from (7.4.5)

2% (ii N u*)2 uz(x+1)

R =
|2K I2(K+1)

fu 0

lul> |u

8. Other Rationalized Elementary Functions

8.1. Rational Points of Quadratic Equations

The Cayley parametrization of the semisimple groups gives a simple method
to find the integral solutions of quadratic forms. Let Gj«xjx, be a non-
degenerate bilinear expression which is left invariant under a semisimple Lie
group & and let 4 be the general element of the group & expressed in terms
of Cayley parameters. If we impose on these parameters the condition of
being integers, from (2.2) it can be seen that each column, say 7, of the matrix
A gives a set of rational points that satisfy the quadratic equation
G A% Ayi = Gy

Take, for instance, the group SO(3) and the Cayley parametrization given
by (3.1.2). The elements of the last column,

2mn + 2ng _ —2mg +2np
mEinl+pitqt’ B it i pir gt

A3 =

“/'133= 2 2 2 - 5 (811)

with m, n, p, q integers are the rational points of the expression 435 + A35 +
A33=1.
If we define
x=dQmp + 2ng), y =d(-2mgq + 2np)
z=dm?+n* —-p?—q?), r=dm*+n®+p*+4*) (8.12)
from (8.1.1) it follows that (8.1.2) gives the integral solutions of
x2 +y? + 2% = 12, a result that was derived first by Carmichael (1915).

The rational values of trigonometric and hyperbolic functions can also be
derived with this method using the Cayley parametrization of the groups
SO(2) and SO(1, 1) respectively.

In the case of the Lorentz group, each column in (3.4.2) gives a set of
rational points ofAzm +A%u +A§” - Aiu =1{u=1,2,3,4). From these
expressions it follows that, if we take the last column

x = —2mr(m? + g%) + 2ms(mn — pq) — 2mt (mp + nq)

y = —2mr(mn + pq) — 2ms(m* + p?) + 2mt(mq — pn)

z= 2mr(mr — ng) — 2ms(mgq + np) — 2mt(m?* +n?) (8.1.3)
t=m?m? +n? +p? +q? +1* + 52 +12) + (ut + ps + qr)?

r=m?m? +n? +pt +q% -1 — s — %) — (nt +ps +qr)?
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withm, n,p, q,r,s, t, integer numbers, we obtain the solutions of the dio-
phantine equation

Poxt oyt g2=p2

8.2. Rational Periodic Functions

Given a rational trigonometric function (7.1.5), is it possible to find a
positive integer /, such that cos (k +)a = coska and sin (k + Do =sinke, in
other words, to have a rational trigonometric function which is periodic with
period 1?7

If we define

72K
¢(K)=chos ke + i sin ka (8.2.1)
where z = m + ni, m, n integers, the periodicity condition reads

ok +1) = ¢(x) or 2=z 2 (8.2.2)

One finds the following primitive solutions (which cannot be decomposed
in the product of other sotutions) of (8.2.2) for

[=1:¢,(k)= 1"
1=2; ¢a(r)=(=1)* (8.2.3)
1=4: ¢4(K) =

For 1+ 1,2, 4 there is no solution of (8.2.2):

Proof. The imaginary part of (8.2.2) reads, for odd J,
l
1m? — n®Y~12mn — (3) m? —n®32@mn)® +-- -+ 2mn)'=0

We can simplify this expression dividing by 2mn (which eliminates the trivial
solution m = 0, or n = 0). Dividing again by n2¢ =V we obtain

1 m? 13_1 I\ [m? 1:—34mz+ . 4mA\U~ V2 =0(8.2.4)
n? IREIAVEE n? A\

This is a diophantine equation of the variable m?/n®. By congruence con-
siderations (Sierpinski, 1964b), the solutions, if existing, is a rational number
whose numerator must be a divisor of /, and the denominator must also be a
divisor of I. Now I can be decomposed in a product of prime numbers. It is
obvious that if (8.2.2) is a solution for given /, it will also be a solution for
each of its prime components. Therefore we will find first the solution of
(8.2.2) for I prime, and then try as possible solutions all the products con-
structed with these prime numbers.

For ] = 2, we immediately get ¢,(x) in (8.2.3). For [ > 2 we have to solve



CAYLEY PARAMETRIZATION OF SEMISIMPLE LIE GROUPS 237

(8.2.4), because any prime [ > 2 is odd. By what has been said above the only
possible solutions of (8.2.4) with [ prime, are m?/n® = 1,1, 1/I, or
m?=n?, m?=m?, Im? = n*
The second and third choice are impossible with m, n integers, and the first
choice does not satisfy the real part of (8.2.2), for / prime. Finally it can be
checked that the only possible products constructed with I = 2, satisfying
(8.2.2) are I =2 x 2, which correspond to ¢4(x)}in (8.2.3).
We can also construct rational periodic functions out of the generalized
trigonometric functions (7.3.4). We define
wZK

dI(K):z—Z"'lZ—K, W=Em+nuy+pustqus (8.2.5)
where m, n, p, g are integers and u, U, U3 satisfy the multiplication law of
Table 2. The periodicity condition reads

Y +D=yx) o wl=lwl¥ (8.2.6)
for some positive integer /. One finds the primitive solutions of (8.2.6) for
1=1:y,(k)=1*
[=2:Y,(k)= (1)
—m+ + +
o3, \i’s(K)=( m+nuy +pu, Clus)"> 3m?=n?+pt+q?
2m
nuy tpuy + qug\x 2.,2,,2,,2
=4y = |22 mP=nap g \(8.2.7)
+ t+ 3pu, +3
1=6: Yg(k) = (m 3'”‘1: Dty qu3)f<’ m2=3(n2+p2 +q2)
2m

J

From (7.3.4) and (8.2.7) we can deduce the rational trigonometric
functions which are periodic. For I = 3, 4, 6 it can be seen that there exist
infinite many solutions which satisfy the conditions for m, n, p, q.

If1+#1,2,3,4, 6 there are no solutions of (8.2.6):

Proof. From the automorphism between the multiplicative group of
quaternions and the proper rotation group, (8.2.6) can be expressed in terms
of matrices (3.1.2), namely A’ = 1. If ¢ is the angle of rotation, this is equivalent
tocoslp=1,sinlp =0, or,

(cosp +ising) =1 (8.2.8)

where [ is a positive integer, and cos ¢ is given by (3.1.4). As before, we only
try the solutions for [ prime. For I = 2 we obtain Y 5(k) = (—1)“. For > 2,1
is odd and the imaginary part of (8.2.8) reads
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_ [ _
l(mZ - n2 _p2 _ q2)l 1 (3) (m2 . n2 _p2 i q2)l 34m2(n2 +p2 + qZ)

$oook (AmA 2 +pP +@?)-DR =0 (8.2.9)

By the same argument as before, the solutions of this diophantine equation
must be of the form

m?=n?+p?+4% m2=l(n2+p2+q2), Zm2=n2+p2+q2

The first choice does not satisfy the real part of (8.2.8). Substituting the
second choice in (8.2.9), we get, after simplification,

-1y - @ (-1 341+ -+@nt-Y2=0  (82.10)

If1=3, we get Y3(k) of (8.2.7). If I # 3, each term in {8.2.10) can be de-
composed as a product of prime numbers. The prime number / appears once
in the first term, but it appears at least twice in the following terms (in the

second term, ; is a multiple of /, because / is a prime number). Therefore
the second choice is not possible for congruence considerations. The same
can be proved for third choice.

Finally, from [ = 2, and [ = 3, the only possible combinations which gives
a solution of (8.2.8)is /=2 x2,and 1 =2 x 3, i.e. Y4(k) and Y¢4(k)
respectively in (8.2.7).

8.3. Integral Hyperbolic Functions

A problem similar to the one in the last subsection arises with respect to
the hyperbolic functions. Are there any particular values of m, 7, s, t in (7.4.3)
that gives integer values for the generalized hyperbolic functions? The question
is equivalent to asking whether the diophantine equation

g (8.3.1)

has non-trivial solutions. In this case
f?/! 2=1, u=m+m4+su5+m6 (8.3.2)

and all the generalized hyperbolic functions (7.4.3) give automatically integer
values. For the case of hyperbolic functions (7.2.6) (s = £ = 0), the only
solution of (8.3.1) is the trivial one, 7 =0, m = 1. In the case of generalized
hyperbolic functions, (8.3.1) has infinitely many solutions, that can be con-
structed as follows: given an arbitrary m(m # 0), m? — 1 is a non-negative
integer N, which can be always expressed as the sum of three squares
(Sierpiniski, 1964c)

N=m?—-1=r*+s%+¢*
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Then the numbers constructed with these values of m, 7, s, t

u® = (m ¥ rug + sus + tug)* (8.3.3)

and the functions derived from (8.3.3) and (7.4.3) have integer values for all
K.

It is interesting to observe that the set of all numbers u”, k¥ positive or
negative integer, given by (8.3.3) form a group with respect to the multiplica-
tion law of the hypercomplex numbers (4.3). In particular, if

m=2wd+1, r=2vq4v4, §=2vqvq, t=2vqv;

where v% +v3 +v3 — v3= 1, then not only |« |? = 1 but also the vector
difference between two consecutive u* and #**! possesses an integer magni-
tude. In fact

Wy =y — 1) = uF (v, 2ugp 1, 20gYas 20003)

and

[ T = uk] = 2w (02 + 03 + 05 — v5)H2 = 20,

hence this infinite regular ‘polygon” has integer values for the length of its side
and the components of its vortices.

9. Semisimple Lie Groups with Rational and Integer Matrix Flements

In the last paragraphs we have described a2 method to find the rational
points of the trigonometric, hyperbolic and exponential functions. From these,
it is very easy to construct the rational linear transformations that leave
invariant some non-degenerate bi-linear form. By rational linear transformations,
we understand those linear transformations whose coefficients can take only
rational values, This can be done by two methods:

(a) Given a semisimple Lie group, we parametrize the defining representa-
tion using the standard decomposition in terms of the Fuler angles (Murnaghan,
1962). It is known that ail the matrix elements are constructed with the help
of trigonometric, hyperbolic or exponential functions. If we take the rational
points of these functions by the methods described in Section 7, we will obtain
matrix elements of the corresponding group with rational values. As an example,
take the Euler decomposition of the rotation group and substitute for the
trigonometric functions their rational points given by (7.1.2). We will obtain
the same result as (5.3) if we impose, in the last expression, the condition for
m, n to be integer.

(b) The second method consists of the use of the Cayley parametrization,
as was described in Sections 2 and 3, and then impose the condition on the
parameters to be integers. Since all the matrix elements in Cayley parametriza-
tion are rational functions, their values will only be rational numbers, for integer
values of the Cayley parameters. Methods (a) and (b) will lead to the same
result, since the corresponding parameters are related to each other, as can
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be seen in the expressions (5.5) and (5.8) for the proper rotation group and
proper Lorentz group.

The rationalization of the semisimple Lie groups makes possible the
conservation of the rational character of the components of a vector. If we
perform a transformation on this vector by some matrix with rational
elements the transformed vector will also possess rational components.

Now we want to restrict more the conditions on the matrix elements of the
semisimplex groups by requiring them to be not only rational but integer
numbers, Doing this we obtain another useful property of linear transforma-
tions. In the hypothesis of N-dimensional cubic lattices, in which the
coordinates take only integer values, any matrix with integer elements will
transform a vector with integer components into another vector of the same
character. We will study one example among the compact groups and another
one among the non-compact groups.

(a) The Proper Rotation Group. If we impose in (3.1.2) all the matrix
elements to be integers we must have either m? — n? — p? + g*=m?+n?+
p? +q% orm? — n? — p? + 42 = 0, and similar conditions for the rest of the
diagonal elements. The first choice givesn = p= g = 0, which corresponds to
the unit matrix. The second choice gives m? = n* = p? = g% which corresponds
to the rotations

010 00 1
00 1), 100 ©.1)
100 010

and similar matrices with two arbitrary minus signs. The cubic lattice is left
invariant under these rotations.

If we consider particular sublattice of the whole Fuclidean lattice like the
set of all points with coordinates d(x, v, z), d, x, y, £ integers, the rotation
matrices for which m? + n? + p? + g% = d will conserve the integral character
of the points in this sublattice. Also the set of all points in the plane

ZP =122 P09 (k=0,1,2,...))

with z =m +in,j, k,l, m, n integers, is also left invariant under a rotation of
angle ¢ = sin ¢ = 2mn/(m? +n?).

(b) The Proper Lorentz Group. A pure Lorentz transformation with
m? — 2 — §2 > =1 will be of the form

B(n,r,s,t)=

m?+r? — 5% - 12 2rs 2rt —2mr
2rs A R 2st —2ms

Ut 25t O S B R , —22mz; ,

_2mr ._2ms “‘sz metrot+sct+t

©.2)
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where all matrix elements are integers. The solution of m? —r? —s? — 2 =
can be obtained with the method explained in Subsection 8.3.

For the proper Lorentz group we can use the decomposition described in
Section 5. The matrices A(m, n, p, q) of the rotation group can only have
integer elements if they are of the form (9.1) or some of the variations
explained afterwards. Therefore the only matrix of the proper Lorentz group

with integer elements will be

A(my,ny,py,q1) B(ma,ra, sz, t,) A(ms,ns,ps,qs) (9-2’)

. 22,222 2 2 3_ 2. 2., 2_ 2
withmi=ny{=pi=qi,m;—r;—s3—t3=1,m3=n3=p3=4q3.

10. Simple Applications to Relativistic Mechanics in a Discrete
Four-Dimensional Space

We have now some mathematical tools to work out the description of
physical laws in a discrete space-time world. Although the mathematical
difficulties of this goal seem to be very great, because of the use of numerical
analysis and difference equations, we will try some simple examples.

According to our first postulate (see Section 6) given a system of reference
S, in a Minkowski space, the space-time variables (x, 1) can take only integer values.
We call this space (3 + 1)-dimensional cubic lattice. Every function of these
variables f(x, ) will allow only integer values of its arguments. Therefore, the
infinitesimal increments {(dx, dr) should be changed by discrete intervals
(Ax, Ar) with integer values. We have:

(a) Trajectory: x = x(¢) {10.1a]

Ax
(b) Velocity: u=— [10.1b]

At 1/2

2
1
() Proper time: Ar=(1 - u_z) Ar= - (c*(Ar)? — (Ax)H)?[10.1¢]
Cc
) mec AX
) Linear momentum: p = @ (At)zo— T [10.1d]
At

(e) Energy: £ = Mol [10.1¢e]

(€ (A1) — (ax)?)!"2

According to our second postulate (Section 6) all functions involving the
space-time variables must be rational, in the sense that their values must be
rational numbers. For this reason, the expression (¢2(A7)? — (Ax)?)'/? which
appears in (¢), (d), (¢) must be an integer, and this is true if the quantities
cAt, Ax simultaneously take some of the values for (¢, x, y, z) given in
formula (8.1.3).

The rest mass mqin (10.1d) and (10.1e) is independent of the space-time
variables in the special relativity, The Lorentz invariant (E%/c?) — p? = m3c?
does not impose any constraint in m, because it is a common factor in both
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sides of this equation. However, its values should take integer values, with
respect to some fundamental mass similarly to the space-time variables. This
assumption, strictly speaking, is not contained in assumption (2) of Section 6,
although is consistent with it.}

With these restrictions, the equation of motion of a particle in the system
S is given by

Ap AE
—=F, ~—=F. 10.2
At " ( )

where p and u are defined above and F is the force which is the cause of the
change of the momentum. For a free particle, F = 0, (10.2) gives Ax/At =
const., but now Ax and At are constrained by the condition that

(c*(A1)? — (Ax)*)'? should be integer.

Given a four vector x whose components are (x, ¢f) in an inertial system S,
the same vector viewed from another inertial system S’, will have components
(x', ct") which are related to the old ones by x" = Lx, where L is a proper
Lorentz transformation. It is easy to prove that the finite increments
(Ax, cAt) transform as a four vector, and so its length’ (¢2(Af)* — (Ax)H)!"?
is a Lorentz invariant. This shows immediately that the proper time in (10.1¢)
is a Lorentz invariant and the four-momentum (p, E/c*) transforms as the
four vector (Ax, cAf). Besides that, if we impose the condition that
(c*(A1)? — (Ax)?)V? be an integer, and that the Cayley parameters of the
Lorentz transformation (3.4.2) take integer values, the rational character of
the four-momentum will be preserved in any inertial system.

Further restriction will be necessary in order to preserve the integer values
of the space-time variables. These restrictions can be satisfied if the Lorentz
transformations are one of the matrices (9.2) or (9.2"). It means that the
velocity of the system S’ with respect to the system S, given by (3.4.3), is
restricted by the condition m? — % —s? — 12 =1,

Consider now the following examples in relativistic electrodynamics. The
force on an electrically charged particle of charge e moving in a given electro-
magnetic field with velocity u relative to an inertial system S is given by
(Mgller, 1952a)

F=e E+~1—(uxH) (10.3)
(B )

which can be substituted in (10.2) to obtain the law of motion. The magnetic
field due to a point charge moving with uniform velocity u = Ax/At is
(Moller, 1952b)

_ e  Axxrx
ArH = I7 P(ct(Aan? — (Ax)P)1? (10.4)

+ We are grateful to Professor Roman for this remark.
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where r is the vector joining the point charge and the goint where H is
wmeasured. In order to have a rational expression H, (] + 5 +r2)? and
(c*(A)? — (Ax)®)'? should be an integer, which is obtained with the help
of (8.1.2) and (8.1.3), and at the same time that ¢ should be measured in
natural units {electron charge = 1), and H should be measured in a system in
which 47 does not appear in (10.4).

We assume that Maxwell’s equation in an inertial system where the
coordinates of a point event are integers should be written (Maller, 1952¢)

AHy  AyHy AH

0
Ax Ay Az
(10.52)
Baby Baly L0
Ay Az ¢ At
AxEx + AyEy+ AzEz =p
Ax 4y Az (10.5b)
H.
AvHz AHy 1AiEx 1 pliy., etc.

Ay Az ¢ At ¢

where H, E, p and u are functions of x, y, z, t. {p is the charge density and u
the velocity with which the charges move in the inertial system §.)

We solve (10.5) in the particular case of a plane wave moving in the direction
of the x-axis in vacuum (p = 0). Then the fields are functions of x, 7 only. By
similar arguments to the continuous case (Meller, 1952d), and taking for
simplicity Ax = Ar =1, one can show that the functions Hy, H,, E,, E,
satisfy the wave equation

AZed(x, 1) = AL 6(x, 1) (10.6)

A solution of this equation will be the exponential function (or each of its
components)

OJ2 t+x
ot +x)=|—s3 10.7
which represents a plane wave going in the direction of the negative x-axis.

(We take x, ¢ in natural units, ¢ = 1.)
In fact, from (7.3.7") we have

A2 QJ2 x+t_(w_w*)2 (.02 x+tt+i
o l? lwlP \wl?

Az wg x+r_ W — o 2 (.02 x+t+}
\lwl? Jow [? lwl?

from which (10.7) follows,
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The analog of (10.7) in the continuous case is the exponential function
(or trigonometric functions)

elzw(t-!-x): ezZ'n =1

Since this is a periodic function, we choose (10.7) to be one of the rational
periodic functions given by (8.2.3) and (8.2.7), with period /, namely

2\ {t+x) 2 \I
"5’(”’6):(1“:)_[2) , (IZIZ)zl (10.8)

Similar arguments can be made for the plane waves in the direction of the
positive x-axis, ¢ (¢ — x), although we should work with the backwards
difference operator.

From this simple example we see that assumption (3) of Section 6 is
fulfilled, since the solution of the continuous case coincide in the rational
points with the solution of the discrete case.

The period T of the solutions ¢; (¢ + x) must be a multiple of /, T =,
j=1,2,..., and the same for the wavelength A =jI (In the particular case of
plane wave (10.8)j = 1.) As in the continuous case, we can define an angular
frequency f and a wave number &, as

I 1 ! 1
f=z=7, K=7=7
T j AT
and so our wave functions become
2\ (1/7)(t+x) 2\T
w w
r+x)={—r , —s] =1 10.9
¢T( ) (‘ W I) (’ W 12) ( )

In this case only those values of ¢ or x, for which #/7 or x/j are integer, have
physical meaning.

If the plane wave is moving perpendicular to a different direction than to
the x-axis the lattice structure requires that

T=jlr and rA=jglr

where r = | r| is a particular solution of the diophantine equation r*= 73 +r3+r3
and r(7,7,73) are the components of a vector r perpendicular to the plane
wave. Calling

the wave functions (10.9) become

wz kyrtk.x
¢(x, )= (—‘2)

lwl
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The main result of these particular solutions of the wave equations is that
the period as well as the wavelength can take only discrete values or, more
exactly, integer multiple of some basic length.

11. Concluding Remarks

The last section, devoted to physical applications, raises some questions
about the viability of the assumptions of Section 6 (remember the strong
conditions on the rational periodic functions and the rotation matrices with
integer elements). A way of avoiding these restrictions could be to relax
assumption (1), by choosing a different field, as was done by Ahmavaara
(1965, 1966).

A necessary task that should be undertaken is the application of the lattice
model to the area of quantum mechanics and quantum field theory, in a2 way
similar to that proposed by Bopp (1967). In our case the rational character
of the wave functions imposes stronger conditions. Nevertheless the Cayley
parametrization of the Lorentz group makes possible the invariance of the
cubic structure of the lattice without taking the limit, as in Bopp’s paper, of
an infinite number of points. This correspondence between the continuous
and discrete case is also possible in the case of the generators of the Lorentz
group, because the matrices S of the Cayley decomposition of semisimple
groups satisfy the same commutation relations as the infinitesimal generators,
as was shown in Section 5. We can still keep the Lie algebra of the operators
in quantum mechanics associated with finite transformations, in the sense of
Cayley generators. These operators will be associated with physical observables,
but now they will have a discrete spectrum, due to the rational character of
their representation.

Finally, some philosophical considerations seem to be unavoidable, although
the geometrical and physical assumptions have been stated without them. If the
space-time lattice is the fundamental reality of the world, it should be con-
sidered the platform where all the events take place. In other words, the
world lattice means that there exists an absolute space-time although, from
the physical point of view, one observer cannot decide whether his system
of reference is at rest and parallel with respect to the world lattice or is moving
with respect to it and in an inclined direction with respect to the three basic
orthogonal axes.

The assumption of a space-time cubic lattice brings out some other problems
which can be discussed, at least, in a philosophical sense. If this lattice is not
only a mathematical model but an objective reality, is there any reason by
which the fundamental points of the lattice are arranged in this particular
cubic structure? If the size of this lattice is finite, as was claimed by Bopp
(1967), are the spatial points of two limiting surfaces, which are in opposite
sides, connected in such a way that the space can be considered as infinite in
any direction? Should not the clear distinction between the world lattice and
the particular entities acting on it require the introduction of a new variable
responsible for the successive actions produced by the individual entity and
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expressed through the space-time variables? This idea seems parallel to the
introduction of a dynamical variable made by Feynman (1949), and also by
Aghassi et al. (1970, 1971), and recently by Hurwitz and Piron (1973), who
claim that this new variable is necessary for the complete description of the
evolution of the physical system.

These questions and other philosophical reflections should be taken
seriously and will require a more thorough study.
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